

B.T. Govt., Degree College :: Madanapalle

Department of physics

BSc (H)- Physics - Course Objective & Learning Outcomes

COURSE 1: ESSENTIALS AND APPLICATIONS OF MATHEMATICAL, PHYSICAL ANDCHEMICAL SCIENCES

Course Objective:

The objective of this course is to provide students with a comprehensive understanding of the essential concepts and applications of mathematical, physical, and chemical sciences. The course aims to develop students' critical thinking, problem-solving, and analytical skills in these areas, enabling them to apply scientific principles to real-world situations.

Learning outcomes:

- 1. Apply critical thinking skills to solve complex problems involving complex numbers, trigonometric ratios, vectors, and statistical measures.
- 2. To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations
- 3. To Explain the basic principles and concepts underlying a broad range of fundamental areas of chemistry and to Connect their knowledge of chemistry to daily life.
- 4. Understand the interplay and connections between mathematics, physics, and chemistry in various applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts.
- 5 To explore the history and evolution of the Internet and to gain an understanding of network security concepts, including threats, vulnerabilities, and countermeasures.

COURSE 2: ADVANCES IN MATHEMATICAL, PHYSICALAND CHEMICAL SCIENCES

Course Objective:

The objective of this course is to provide students with an in-depth understanding of the recent advances and cutting-edge research in mathematical, physical, and chemical sciences. The course aims to broaden students' knowledge beyond the foundational concepts and expose them to the latest developments in these disciplines, fostering critical thinking, research skills, and the ability to contribute to scientific advancements.

Learning outcomes:

- 1. Explore the applications of mathematics in various fields of physics and chemistry, to understand how mathematical concepts are used to model and solve real-world problems.
- 2. To explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to connect their knowledge of physics to everyday situations.
- 3. Understand the different sources of renewable energy and their generation processes and advances in nano materials and their properties, with a focus on quantum dots. To study the emerging field of quantum communication and its potential applications. To gain an understanding of the principles of biophysics in studying biological systems. Explore the properties and applications of shape memory materials.
- 4. Understand the principles and techniques used in computer-aided drug design and drug delivery systems, to understand the fabrication techniques and working principles of nano sensors. Explore the effects of chemical pollutants on ecosystems and human health.
- 5. Understand the interplay and connections between mathematics, physics, and chemistry in various advanced applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts.
- 6. Understand and convert between different number systems, such as binary, octal, decimal, and hexadecimal. Differentiate between analog and digital signals and understand their characteristics. Gain knowledge of different types of transmission media, such as wired (e.g., copper cables, fiber optics) and wireless (e.g., radio waves, microwave, satellite)..

COURSE 3: MECHANICS AND PROPERTIES OF MATTER

COURSE OBJECTIVE:

The course on Mechanics and Properties of Matter aims to provide students with a fundamental understanding of the behavior of physical systems, both in terms of mechanical motion and in terms of the properties of matter

LEARNING OUTCOMES:

- 1. Students will be able to understand and apply the concepts of scalar and vector fields, calculate the gradient of a scalar field, determine the divergence and curl of a vector field.
- 2. Students will be able to apply the laws of motion, solve equations of motion for variable mass systems
- 3. Students will be able to define a rigid body and comprehend rotational kinematic relations, derive equations of motion for rotating bodies, analyze the precession of a top and gyroscope, understand the precession of the equinoxes
- 4. Students will be able to define central forces and provide examples, understand the characteristics and conservative nature of central forces, derive equations of motion under central forces.
- 5. Students will be able to differentiate between Galilean relativity and the concept of absolute frames, comprehend the postulates of the special theory of relativity, apply Lorentz transformations, understand and solve problems

COURSE 3: MECHANICS AND PROPERTIES OF MATTER (Practical)

COURSE OBJECTIVE: To develop practical skills in the use of laboratory equipment and experimental techniques for measuring properties of matter and analyzing mechanical systems.

LEARNING OUTCOMES:

- 1. Mastery of experimental techniques: Students should become proficient in using laboratory equipment and experimental techniques to measure properties of matter and analyze mechanical systems.
- 2. Application of theory to practice: Students should be able to apply theoretical concepts learned in lectures to real-world situations, and understand the limitations of theoretical models.

- 3. Accurate recording and analysis of data: Students should be able to accurately record and analyze experimental data, including understanding the significance of error analysis and statistical methods.
- 4. Critical thinking and problem solving: Students should be able to identify sources of error, troubleshoot experimental problems, and develop critical thinking skills in experimental design and analysis.
- 5. Understanding of physical principles: Students should develop an understanding of the physical principles governing mechanical systems and the properties of matter, including elasticity, viscosity, and thermal expansion.

COURSE 4: WAVES AND OSCILLATIONS

COURSE OBJECTIVE:

This course provides students with a broad understanding of the physical principles of the oscillations, to help them develop critical thinking and quantitative reasoning skills, to empower them to think creatively and critically about scientific problems and experiments.

LEARNING OUTCOMES:

The student should be able

- 1. To describe the basic characteristics of waves such as frequency, wavelength, amplitude, period, and speed.
- 2. To utilize mathematical relationships related to wave characteristics.
- 3. To compare particle motion and wave motion in different types of waves.
- 4. To distinguish between Longitudinal and Transverse waves.
- 5. To get the knowledge about how to construct and analysis the square waves, saw tooth waves, etc. from Fourier analysis

COURSE 4: WAVES AND OSCILLATIONS (Practical)

COURSE OBJECTIVE:

This course provides students with a broad understanding of the physical principles of the oscillations, to help them develop critical thinking and quantitative reasoning skills, to empower them to think creatively and critically about scientific problems and experiments.

LEARNING OUTCOMES:

- 1. Students are made to determine the unknown frequency of tuning fork by volume resonator experiment
- 2. Students are made to determine 'g' by compound/bar pendulum
- 3. Students are made to determine the force constant of a spring by static and dynamic method.
- 4. Students are made to determine the elastic constants of the material of a flat spiral spring.
- 5. Students are made to verify the laws of vibrations of stretched string –sonometer
- 6. Students are made to determine the frequency of a bar –Melde's experiment.
- 7. Students are made to study the damped oscillation using the torsional pendulum immersed in liquid-decay constant and damping correction of the amplitude.
- 8. Students are made to form Lissajous figures using CRO.

COURSE 5: OPTICS

COURSE OBJECTIVE:

The course on Optics aims to provide students with a fundamental understanding of the behaviour and properties of light and its interaction with matter.

LEARNING OUTCOMES:

On successful completion of this course, the student will be able to:

- 1. Explain about the different aberrations in lenses and discuss the methods of minimizing them
- 2. Understand the phenomenon of interference of light and its formation in (i) Lloyd's single mirror due to division of wave front and (ii) Thin films, Newton's rings and Michelson interferometer due to division of amplitude.
- 3. Distinguish between Fresnel's diffraction and Fraunhoffer diffraction and observe the diffraction patterns in the case of single slit and the diffraction grating and to describe the construction and working of zone plate and make the comparison of zone plate with convex lens

- 4. Explain the various methods of production of plane, circularly and polarized light and their detection and the concept of optical activity.
- 5. Comprehend the basic principle of laser, the working of He-Ne laser and Ruby lasers and their applications in different fields. To understand the basic principles of fiber optic communication and explore the field of Holography and Nonlinear optics and their applications.

COURSE 5: OPTICS (Practical)

COURSE OBJECTIVE:

To develop practical skills in the use of laboratory equipment and experimental techniques for studying light and its interactions with matter.

LEARNING OUTCOMES:

- 1. Mastery of experimental techniques: Students should become proficient in using laboratory equipment and experimental techniques for studying light and its interactions with matter.
- 2. Application of theory to practice: Students should be able to apply theoretical concepts learned in lectures to real-world situations, and understand the limitations of theoretical models.
- 3. Accurate recording and analysis of data: Students should be able to accurately record and analyze experimental data, including understanding the significance of error analysis and statistical methods.
- 4. Critical thinking and problem solving: Students should be able to identify sources of error, troubleshoot experimental problems, and develop critical thinking skills in experimental design and analysis.
- 5. Understanding of physical principles: Students should develop an understanding of the physical principles governing optics, including reflection, refraction, diffraction, interference, and polarization.

COURSE 6: HEAT AND THERMODYNAMICS

COURSE OBJECTIVE:

The course on Heat and Thermodynamics aims to provide students with a fundamental understanding of the principles of heat and energy transfer and their applications in various fields

LEARNING OUTCOMES:

On successful completion of this course, the student will be able to:

- 1. Understand the basic aspects of kinetic theory of gases, Maxwell-Boltzmann distribution law, equipartition of energies, mean free path of molecular collisions and the transport phenomenon in ideal gases
- 2. Gain knowledge on the basic concepts of thermodynamics, the first and the second law of thermodynamics, the basic principles of refrigeration, the concept of entropy, the thermodynamic potentials and their physical interpretations. Understand the working of Carnot's ideal heat engine, Carnot cycle and its efficiency
- 3. Develop critical understanding of concept of Thermodynamic potentials, the formulation of Maxwell's equations and its applications.
- 4. Differentiate between principles and methods to produce low temperature, liquefy air, and understand the practical applications of substances at low temperatures.
- 5. Examine the nature of black body radiations and the basic theories

COURSE 6: HEAT AND THERMODYNAMICS (Practical)

COURSE OBJECTIVE:

The objectives for practical's in Heat and Thermodynamics can vary depending on the specific course or program, but here are some general objectives that may apply, to develop practical skills in the use of laboratory equipment and experimental techniques for studying heat and thermodynamics.

LEARNING OUTCOMRES:

- 1. Mastery of experimental techniques: Students should become proficient in using laboratory equipment and experimental techniques for studying heat and thermodynamics.
- 2. Application of theory to practice: Students should be able to apply theoretical concepts learned in lectures to real-world situations, and understand the limitations of theoretical models.
- 3. Accurate recording and analysis of data: Students should be able to accurately record and analyze experimental data, including understanding the significance of error analysis and statistical methods.
- 4. Critical thinking and problem solving: Students should be able to identify sources of error, troubleshoot experimental problems, and develop critical thinking skills in experimental design and analysis.

5. Understanding of physical principles: Students should develop an understanding of the physical principles governing heat and thermodynamics, including the laws of thermodynamics, heat transfer, and thermodynamic cycles.

COURSE 7: ELECTRONIC DEVICES AND CIRCUITS

COURSE OBJECTIVE:

The course on Electronic Devices and Circuits aims to provide students with a fundamental understanding of electronic devices and their applications in various circuits.

LEARNING OUTCOMES:

- 1. Understand the behavior of P-N junction diodes in forward and reverse bias conditions and analyze the impact of junction capacitance on diode characteristics.
- 2. Analyze and compare the characteristics and operation of different BJT configurations (CB, CE, and CC) and demonstrate proficiency in biasing techniques.
- 3. Comprehend the operation and characteristics of FETs, including JFETs and MOSFETs, and explain the working principles and characteristics of UJTs.
- 4. Describe the operation and applications of various photoelectric devices such as LEDs, photo diodes, phototransistors, and LDRs.
- 5. Understand the operation of rectifiers (half-wave, full-wave, and bridge), analyze the ripple factor and efficiency, and demonstrate knowledge of different filter types and three-terminal voltage regulators

COURSE 7: ELECTRONIC DEVICES AND CIRCUITS (Practical)

COURSE OBJECTIVE:

The course objectives for a practical course in Electronic Devices and Circuits might provide hands-on experience with the fundamental principles of electronic devices and circuits.

LEARNING OUTCOMES:

- 1. Understand the principles of electronic devices and circuits and their applications in real-world scenarios.
- 2. Analyze and design electronic circuits using diodes, transistors, and operational amplifiers.
- 3. Understand the importance of biasing and stability in electronic circuits and how to achieve them.
- 4. Develop the skills to design and analyze amplifier circuits and to understand the concept of feedback and its application in electronic circuits.
- 5. Analyze and design simple oscillators, power supplies, and filters.

- 6. Gain hands-on experience with electronic test equipment such as multimeters, oscilloscopes, and function generators.
- 7. Develop skills in circuit construction, measurement, and testing.
- 8. Learn how to troubleshoot and diagnose electronic circuit problems.
- 9. Understand the safety procedures for working with electronic circuits and equipment.

COURSE 8: ANALOG AND DIGITAL ELECTRONICS

COURSE OBJECTIVE:

The course on Analog and Digital Electronics aims to provide students with a fundamental understanding of the principles of electronic circuits and their applications in both analog and digital systems.

LEARNING OUTCOMES:

On successful completion of this course, the student will be able to:

- 1. Understand Principles and Working of Operational Amplifier
- 2. Apply their knowledge on OP-Amp in different Applications
- 3. To understand the number systems, Binary codes and Complements.
- 4. To understand the Boolean algebra and simplification of Boolean expressions.
- 5. To analyze logic processes and implement logical operations using combinational logic circuits.
- 6. To understand the concepts of sequential circuits and to analyze sequential systems in terms of state machines

COURSE 8: ANALOG AND DIGITAL ELECTRONICS (Practical)

COURSE OBJECTIVES:

The course objectives for a practical course in Analog and Digital Electronics might provide students with hands-on experience in designing, constructing, and testing analog and digital electronic circuits.

LEARNING OUCOMES:

- 1. Understand the principles of analog and digital electronic circuits and their applications in real-world scenarios.
- 2. Analyze and design analog electronic circuits using diodes, transistors, and operational amplifiers.
- 3. Analyze and design digital electronic circuits using logic gates, flip-flops, and counters.

4. Understand the importance of biasing.	, feedback,	and stability	in electronic	circuits	and hov	v to
achieve them.						

5. Develop the skills to design and analyze amplifier circuits and digital systems.

COURSE 9: ELECTRICITY AND MAGNETISM

COURSE OBJECTIVE:

The course on Electricity and Magnetism aims to provide students with a fundamental understanding of the principles of electricity, magnetism, and their interactions

LEARNING OUTCOMES:

On successful completion of this course, the students will be able to:

- 1. Understand the Gauss law and its application to obtain electric field in different cases and formulate the relationship between electric displacement vector, electric polarization, Susceptibility, Permittivity and Dielectric constant.
- 2. To learn the methods used to solve problems using loop analysis, Nodal analysis, Thvenin's theorem, Norton's theorem, and the Superposition theorem
- 3. Distinguish between the magnetic effect of electric current and electromagnetic induction and apply the related laws in appropriate circumstances.
- 4. Understand Biot and Savart's law and Ampere's circuital law to describe and explain the generation of magnetic fields by electrical currents.
- 5. Develop an understanding on the unification of electric, and magnetic fields and Maxwell's equations governing electromagnetic waves.
- 6. Phenomenon of resonance in LCR AC-circuits, sharpness of resonance, Q- factor, Power factor and the comparative study of series and parallel resonant circuits

COURSE 9: ELECTRICITY AND MAGNETISM (Practical)

COURSE OBJECTIVE:

The course objective for a practical course in electricity and magnetism may include to develop practical skills in handling electrical and electronic components, such as resistors, capacitors, inductors, transformers, and oscillators.

LEARNING OUTCOMES:

- 1. Demonstrate a thorough understanding of the fundamental concepts and principles of electricity and magnetism.
- 2. Apply the laws and principles of electricity and magnetism to analyze and solve electrical and magnetic problems.
- 3. Design, construct, and test electrical circuits using various components and measuring instruments.
- 4. Measure and analyze electrical quantities such as voltage, current, resistance, capacitance, and inductance using appropriate instruments.
- 5. Apply the principles of electromagnetism to understand and analyze the behavior of magnetic fields and their interactions with electric currents

COURSE 10: MODERN PHYSICS

COURSE OBJECTIVE:

The course on Modern Physics aims to provide students with an understanding of the principles of modern physics and their applications in various fields.

LEARNING OUTCOMES:

On successful completion of this course, the students will be able to:

- 1. Understand the principles of atomic structure and spectroscopy.
- 2. Understand the principles of molecular structure and spectroscopy
- 3. Develop critical understanding of concept of Matter waves and Uncertainty principle.
- 4. Get familiarized with the principles of quantum mechanics and the formulation of Schrodinger wave equation and its applications.
- 5. Increase the awareness and appreciation of superconductors and their practical applications

COURSE 10: MODERN PHYSICS (Practical)

COURSE OBJECTIVE:

The course objective for a practical course in Modern Physics may provide hands-on experience with experimental techniques and equipment used in modern physics experiments.

LEARNING OUTCOMES:

- 1. Apply experimental techniques and equipment to investigate and analyze phenomena related to modern physics, such as quantum mechanics, relativity, atomic physics, and nuclear physics.
- 2. Demonstrate a deep understanding of the principles and theories of modern physics through hands-on experimentation and data analysis.
- 3. Develop proficiency in using advanced laboratory instruments and techniques specific to modern physics experiments, such as spectroscopy, interferometry, particle detectors, and radiation measurement.
- 4. Analyze and interpret experimental data using statistical methods and error analysis, drawing meaningful conclusions and relating them to theoretical concepts.
- 5. Design and conduct independent experiments or investigations related to modern physics, demonstrating the ability to plan, execute, and analyze experimental procedures and results.

COURSE 11: INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS

COURSE OBJECTIVE:

The course aims to provide students with an understanding of the principles of Nuclear and Particle physics and their applications in various fields.

LEARNING OUTCOMES

By successful completion of the course, students will be able to

- 1. know about high energy particles and their applications which prepares them for further study and research in elcitrapphysics
- 2. Students can explain important concepts on nucleon-nucleon interaction, such as its short-range, spin dependence, isospin, and tensors.
- 3. Students can show the potential shapes from nucleon nucleon interactions.
- 4. Students can explain the single particle model, its strengths, and weaknesses
- **5.** Students can explain magic numbers based on this mode

COURSE 11: INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS (Practical)

COURSE OBJECTIVE:

To familiarize students with experimental techniques and methodologies used in nuclear and particle physics.

To provide hands-on experience in conducting experiments related to nuclear and particle physics.

LEARNING OUTCOMES:

- 1. Gain a solid understanding of fundamental concepts in nuclear and particle physics.
- 2. Acquire knowledge of experimental techniques and methodologies used in the field.
- 3. Understand the principles and operation of laboratory equipment and instruments specific to nuclear and particle physics experiments.
- 4. Develop proficiency in conducting experiments related to nuclear and particle physics.
- 5. Acquire skills in data acquisition, analysis, and interpretation using appropriate software and techniques.
- 6. Learn to design and perform experiments, including calibration, measurement, and control of variables.

COURSE 12: APPLICATIONS OF ELECTRICITY AND MAGNETISM

COURSE OBJECTIVE:

The objective of the course on Applications of Electricity and Magnetism is to provide students with a comprehensive understanding of the practical applications of electricity and magnetism in various fields. The course aims to develop students' knowledge and skills in applying electrical and magnetic principles to real-world problems and technologies.

LEARNING OUTCOMES:

Students after successful completion of the course will be able to:

- 1. Identify various components present in Electricity& Electronics Laboratory.
- 2. Acquire a critical knowledge of each component and its utility (like resistors, capacitors, inductors, power sources etc.).
- 3. Demonstrate skills of constructing simple electronic circuits consisting of basic circuit elements.
- 4. Understand the need & Functionality of various DC & AC Power sources.

5. Comprehend the design, applications and practices of various electrical & Electronic devices and also their trouble shooting.

COURSE 12: APPLICATIONS OF ELECTRICITY AND MAGNETISM (Practical)

COURSE OBJECTIVE:

The objective of the practical course on Applications of Electricity and Magnetism is to provide students with hands-on experience and practical skills in applying electrical and magnetic principles to real-world applications. The course aims to develop students' proficiency in working with electrical circuits, electromagnetic devices, and related technologies through practical experimentation and project-based activities.

LEARNING OUTCOMES:

On successful completion of this practical course, student shall be able to:

- 1. List out, identify and handle various equipment in Electrical & Electronics laboratory.
- 2. Learn the procedures of designing simple electrical circuits.
- 3. Demonstrate skills on the utility of different electrical components and devices.
- 4. Acquire the skills regarding the operation, maintenance and troubleshooting of various Devices in the lab.
- 5. Understand the different applications of Electromagnetic induction

COURSE 13: ELECTRONIC INSTRUMENTATION

COURSE OBJECTIVE:

The objective of the course on Electronic Instrumentation is to provide students with a comprehensive understanding of various electronic instruments used for measurement, data acquisition, and control applications. The course aims to develop students' knowledge and skills in the design, operation, calibration, and application of electronic instruments.

LEARNING OUTCOMES:

Students after successful completion of the course will be able to:

- 1. Identify various facilities required to set up a basic Instrumentation Laboratory.
- 2. Acquire a critical knowledge of various Electrical Instruments used in the Laboratory.
- 3. Demonstrate skills of using instruments like CRO, Function Generator, Multimeter etc. through hands on experience.
- 4. Understand the Principle and operation of different display devices used in the display systems and different transducers

5. Comprehend the applications of various biomedical instruments in daily life like B.P. meter, ECG, Pulse oximeter etc. and know the handling procedures with safety and security.

COURSE 13: ELECTRONIC INSTRUMENTATION (Practical)

COURSE OBJECTIVE:

The objective of the practical course on Electronic Instrumentation is to provide students with hands-on experience in using electronic instruments for measurement, data acquisition, and control applications. The course aims to develop students' practical skills in operating, calibrating, and troubleshooting electronic instruments commonly used in scientific, engineering, and industrial settings.

LEARNING OUTCOMES:

- 1. Familiarize students with a range of electronic instruments, including multimeters, oscilloscopes, signal generators, and data acquisition systems.
- 2. Learn the basic operation, functions, and features of each instrument.
- 3. Gain hands-on experience in connecting, configuring, and using different instruments for various measurement tasks.
- 4. Develop proficiency in performing common electrical measurements, such as voltage, current, resistance, frequency, and temperature measurements.
- 5. Learn specialized measurement techniques, including impedance measurements, time and frequency measurements, and power measurements.
- **6.** Gain practical experience in selecting appropriate measurement techniques and instruments for specific applications.

COURSE 14A: OPTICAL INSTRUMENTS AND OPTOMETRY

COURSE OBJECTIVE:

The objective of the course on Optical Instruments and Optometry is to provide students with a comprehensive understanding of the principles, design, and application of optical instruments used in various fields, with a specific focus on optometry

LEARNING OUTCOMES:

Students at the successful completion of the course will be able to:

- 1. Understand the construction and working principles of various optical instruments used in daily life.
- 2. Acquire a critical knowledge on the various defects of eye and their correcting methods with suitable lenses.
- 3. Demonstrate skills of using biological microscope through hands on experience.
- 4. Understand the various techniques used in optometry and computer based eye testing.
- 5. Comprehend the various applications of microscopes and telescopes

COURSE 14 A: OPTICAL INSTRUMENTS AND OPTOMETRY (Practical)

COURSE OBJECTIVE:

The objective of the practical course on Optical Instruments and Optometry is to provide students with hands-on experience and practical skills in the operation, calibration, and application of optical instruments used in optometry

Learning Outcomes:

On successful completion of this practical course, student shall be able to:

- 1. List out, identify and handle various equipment like binoculars, telescopes and microscopes.
- 2. Learn the procedures of operation of various optical instruments.
- 3. Demonstrate skills on testing the power of lenses, improving the resolution of telescopes and microscopes.
- 4. Acquire skills in observing and measuring the power, focal length and different refractive errors of eye.
- 5. Perform some techniques related to testing the blood and other biological samples.
- 6. Understand the technique of operation of Computer eye testing and evaluation

COURSE 14B: OPTICAL IMAGING AND PHOTOGRAPHY

COURSE OBJECTIVE:

The objective of the course on Optical Imaging and Photography is to provide students with a comprehensive understanding of the principles, techniques, and applications of optical imaging and photography. The course aims to develop students' theoretical knowledge and practical skills in capturing, processing, and interpreting images using optical devices and imaging technologies.

LEARNING OUTCOMES:

Students after successful completion of the course will be able to:

- 1. Identify the different types of cameras and camera lenses according to different purposes.
- 2. Identify and understand the focal length of the different types of lenses
- 3. Acquire a critical knowledge on natural and artificial sources of light and their application in photography.
- 4. Demonstrate skills of camera usage especially Digital Cameras. To understand the various Image development and editing techniques.
- 5. Comprehend the concept of different types of common shooting techniques.

COURSE 14B: OPTICAL IMAGING AND PHOTOGRAPHY (Practical)

COURSE OBJECTIVE:

The objective of the practical course on Optical Imaging and Photography is to provide students with hands-on experience and practical skills in capturing, processing, and interpreting optical images using various imaging techniques and equipment. The course aims to develop students' proficiency in operating optical imaging devices, utilizing image processing software, and analyzing images for different applications.

LEARNING OUTCOMES:

On successful completion of this practical course, student shall be able to:

- 1. List out, identify and understand various image formation techniques including Eye.
- 2. Learn the procedures of using Analog and Digital cameras.
- 3. Demonstrate the focusing techniques of Analog and Digital cameras.
- 4. Acquire skills in the editing and development of photos and videos.
- 5. Perform some experimental skills related to images, videos using the equipment available in the lab or in a local studio.

COURSE 15A: LOW TEMPERATURE PHYSICS & REFRIGERATI

COURSE OBJECTIVE:

The objective of the course on Low Temperature Physics & Refrigeration is to provide students with a comprehensive understanding of the fundamental principles, concepts, and applications of low-temperature physics and refrigeration systems. The course aims to develop students' theoretical knowledge and practical skills in working with low temperatures, understanding cryogenic phenomena, and operating refrigeration systems.

LEARNING OUTCOMES:

Students after successful completion of the course will be able to

- 1. Identify various methods and techniques used to produce low temperatures in the Laboratory.
- 2. Acquire a critical knowledge on refrigeration and air conditioning.
- 3. Demonstrate skills of Refrigerators through hands on experience and learns about refrigeration components and their accessories.
- 4. Understand the classification, properties of refrigerants and their effects on environment.
- 5. Comprehend the applications of Low Temperature Physics and refrigeration.

COURSE 15A: LOW TEMPERATURE PHYSICS & REFRIGERATION (Practical)

COURSE OBJECTIVE:

The objective of the practical course on Low Temperature Physics & Refrigeration is to provide students with hands-on experience and practical skills in working with low temperatures, operating refrigeration systems, and conducting experiments in the field of low temperature physics. The course aims to develop students' proficiency in handling cryogenic equipment, performing temperature measurements, and conducting experiments at low temperatures.

LEARNING OUTCOMES:

On completion of practical course, student shall be able to

- 1. List out, identify and handle equipment used in refrigeration and low temperature lab.
- 2. Learn the procedures of preparation of Freezing Mixtures.
- 3. Demonstrate skills on developing various Freezing mixtures and materials and their applications in agriculture, medicine and day to day life.
- 4. Acquire skills in observing and measuring various methodologies of very low temperatures
- 5. Perform some techniques related to Refrigeration and Freezing in daily life.

COURSE 15B: SOLAR ENERGY AND ITS APPLICATIONS

COURSE OBJECTIVE:

The objective of the course on Solar Energy and Its Applications is to provide students with a comprehensive understanding of solar energy technologies, their principles, and their applications. The course aims to develop students' knowledge and skills in harnessing solar energy for various purposes, including electricity generation, heating, and cooling.

LEARNING OUTCOMES:

After successful completion of the course, the student will be able to:

- 1. Understand Sun structure, forms of energy coming from the Sun and its measurement.
- 2. Acquire a critical knowledge on the working of thermal and photovoltaic collectors.
- 3. Demonstrate skills related to callus culture through hands on experience
- 4. Understand testing procedures and fault analysis of thermal collectors and PV modules.
- 5. Comprehend applications of thermal collectors and PV modules

COURSE 15B: SOLAR ENERGY AND ITS APPLICATIONS (Practical)

COURSE OBJECTIVE:

The objective of the practical course on Solar Energy and Its Applications is to provide students with hands-on experience and practical skills in working with solar energy systems, performing measurements and analysis, and implementing solar energy projects. The course aims to develop students' proficiency in solar energy system installation, maintenance, performance analysis, and practical application.

LEARNING OUTCOMES:

On successful completion of this practical course, student shall be able to:

- 1. List out and identify various components of solar thermal collectors and systems, solar photovoltaic modules and systems.
- 2. Learn the procedures for measurement of direct, global and diffuse solar radiation, I V characteristics and efficiency analysis of solar cells and modules.
- 3. Demonstrate skills acquired in evaluating the performance of solar cell / module in connecting them appropriately to get required power output.
- 4. Acquire skills in identification and elimination of the damaged panels without affecting the output power in a module / array.
- 5. Perform procedures and techniques related to general maintenance of solar thermal and photovoltaic modules.
